PCI 7 November 2023, 15:22
Thermofisher: Thu 29 February 2024, 11:15
BMG Labtech: Wed 18 September 2024, 11:55
Owen Mumford 12 January 2022, 16:46

Current Edition

Cell and Gene Therapy

Upcoming Events

PEGS Boston – 17/02/2025
NextGen BioMed – 04/02/2025
BioTrinity 2025 – January 30th 2025
Elrig R&I 2025 – 27th January 2025
Biotechnology Show 2025: 20th January 2025
Anglonordic: 16th January 2025
AI in Drug Discovery – SAE media – January 14th 2025

Advertisement

Fujifilm rectangle: Fri 22 November 2024, 14:23
Roald Dahl Charity: Fri 15 November 2024, 12:57
A&M STABTEST: Fri 21 June 2024, 11:43
CDD Vault: Wed 17 July 2024, 11:46
Aurisco – 04/02/2025

New insight into aggressive breast cancers

Scientists from Cardiff University have uncovered a protein which drives aggressive breast cancer and could be targeted for developing new and improved therapies.
Professor Matt Smalley, from Cardiff University’s European Cancer Stem Cell Research Institute, said: “There are 150 new cases of breast cancer diagnosed in the UK every day. To achieve better outcomes for people facing this disease, we need to better understand how it develops so we can improve therapies.
“We wanted to understand what drives an aggressive type of breast cancer called triple negative, which is resistant to hormone therapy and occurs in around fifteen percent of breast cancer cases.
“We looked at a protein called LYN, which is involved in keeping cells alive and allowing them to divide, and found that it was no longer properly controlled in aggressive breast cancer cells and could drive the cancer cell growth, spread and invasion.”
The team also found that in a subset of triple negative breast cancer cells associated with the BRCA1 gene mutation, LYN could be switched on and increase cancer cell survival directly as a result of the loss of BRCA1. Interfering with LYN function under experimental conditions killed these BRCA1-mutant cells.
Professor Matt Smalley added: “Now that we understand the role LYN has in aggressive forms of cancer, we can start to think about developing targeted therapies.
“In the future, we could potentially identify patients that have increased levels of LYN or a BRCA1 gene mutation, and design their breast cancer therapy to suit their type of cancer. We could target LYN to improve therapy options for aggressive breast cancer.”
Newcells 3 June 2024, 15:12
Novonordisk: Wed 17 July 2024, 11:22
FujiFilm 30 October 2023, 16:23
Autoscribe Mon 26 June 2023, 15:15
Aldevron: 16th January 2025
Richter: Wed 23 October 2024, 09:03
GenXPro: Mon 16 September 2024, 10:40