In the dynamic world of biomanufacturing, the quest for improved efficiency and productivity continues to shape industry advancements. Among these innovations, the emergence of N-1 perfusion technology stands out as a pivotal milestone, offering a practical pathway to enhance production processes and boost overall efficiency.
N-1 perfusion operates on a simple, yet powerful principle known as process intensification. This strategic approach aims to maximise the output of manufacturing facilities and streamline the timelines of production. While continuous processing has garnered attention for its efficiency gains, the traditional fed-batch culture remains a fundamental method in stable protein production using mammalian cell culture. In this context, techniques to intensify fed-batch processes, such as N-1 perfusion, present exciting opportunities for the advancement of biomanufacturing practices.
The appeal of N-1 perfusion lies in its ability to support high cell densities with sustained exponential growth and viability. This capability extends beyond the production phase to include the critical aspect of seed train intensification – a fundamental process in bioprocessing. By enabling a significant increase in cell density, N-1 perfusion offers a way to streamline operations by reducing the size or number of required seed reactors, thereby optimising facility space and investment costs. At the heart of this strategy is the concept of seeding the fed-batch production bioreactor with substantially higher cell densities from the N-1 seed culture. This strategic shift in the early growth phase of production paves the way for streamlined timelines without compromising the essential growth and yield profiles of the final product.
In this article, we delve into the practical applications of N-1 perfusion technology, showcasing its potential to transform biomanufacturing processes. Through real-world examples and data, we demonstrate how N-1 perfusion enables facilities to achieve higher productivity and improved efficiency – all while optimising resource utilisation and operational costs. Let’s now break down the discussion into key aspects of N-1 perfusion technology, exploring its suitability for various processes and products, considerations for implementation, its rising adoption in the industry, and future directions.
Suitable Processes and Products for N-1 Perfusion
N-1 (seed) intensification through perfusion technology proves highly beneficial where the goal is to enhance productivity without major alterations to the production process. The essence of N-1 perfusion lies in increasing the cell density in the pre-production bioreactor, denoted as N-1 (N being the production bioreactor). This increase in cell density is achieved more effectively using perfusion technology compared to routine batch modes.