

Modelling the Bone Marrow Niche In Vitro: A Roadmap for Drug Development

The bone marrow niche provides a tightly controlled setting where cellular interactions, biochemical signalling, and mechanical stimuli collectively shape the fate of hematopoietic stem cells (HSCs). Given its role in haematopoiesis, understanding and accurately replicating this niche is crucial for advancing stem cell therapies and developing effective treatments for haematological diseases, such as leukaemia, aplastic anaemia, and myelodysplastic syndromes.

Cutting-edge *in vitro* models hold great promise for drug development by offering a more predictive platform for studying HSC biology, disease mechanisms, and therapeutic responses. They can serve as valuable tools for testing novel drugs, screening potential treatments for disorders associated with bone marrow, and optimising stem cell-based therapies for transplantation and regenerative medicine.

Challenges in Bone Marrow Niche Modelling

Recreating the bone marrow niche *in vitro* presents significant challenges. The niche consists of a mix of cellular components, including mesenchymal stromal cells, osteoblasts, endothelial cells, and immune cells, all embedded within a structurally complex extracellular matrix (ECM). Additionally, biochemical gradients, mechanical forces, and fluid dynamics contribute to the functional integrity of the niche, making it difficult to fully replicate in traditional *in vitro* systems.

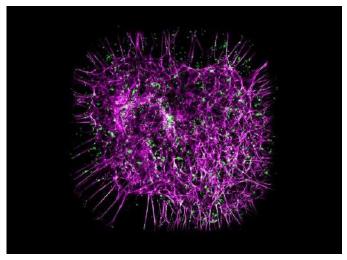


Figure 1: 3D In Vitro Bone Marrow Model (Image provided by Nikon Biolmaging Center)

The bone marrow niche also undergoes changes in response to ageing, disease, and therapeutic interventions. Effective models must capture these dynamic processes to be relevant for drug testing and development. These complexities require innovative bioengineering strategies to create physiologically relevant models that can accurately mimic the *in vitro* bone marrow environment.

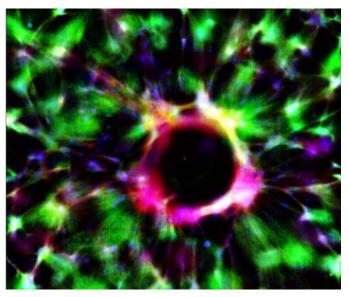


Figure 2: Enhanced Pre-Vascular Branch Thickening via Fibronectin Over 12 Days. Blue, Nuclei; Red, Actin/Cytoskeleton; Green, Fibronectin.

Modelling Approaches of the Bone Marrow Niche

Recent advancements in tissue engineering, biomaterials, and microfluidic technologies have led to the development of sophisticated bone marrow niche *in vitro* models that more closely resemble physiological conditions.

- Scaffold-based 3D cell cultures provide structural support and facilitate cell-cell interactions in a three-dimensional environment, enhancing cellular functionality and response.
- Microfluidic systems and organ-on-a-chip platforms offer precise control over fluid flow, nutrient exchange, and biochemical gradients, enabling researchers to study niche dynamics in real-time.
- Co-culture models, which integrate multiple niche cell types, allow for the study of critical interactions that influence HSC behaviour and disease progression.
- Other emerging advancements in bioprinting, selfassembling organoids, and dynamic bioreactors are further expanding the repertoire of bone marrow niche models, improving their predictive power in drug development.

By integrating advanced biomaterials, microfluidic platforms, and co-culture systems, researchers have been able to create increasingly accurate representations of the bone marrow niche that offer greater biological relevance compared to traditional two-dimensional cultures. By providing a more physiologically relevant environment for drug testing, these models have the potential to accelerate the development of safer and more effective therapies while also reducing the reliance on animal models.

As research in this field continues to evolve, these advanced models are expected to revolutionise the way we study the

Research / Innovation / Development

bone marrow niche, accelerating the discovery of innovative treatments for haematological diseases and improving patient outcomes.

Applications of Bone Marrow Niche Models in Drug Development

Beyond fundamental research, these engineered bone marrow niche models have significant translational applications.

Understanding HSC Regulation

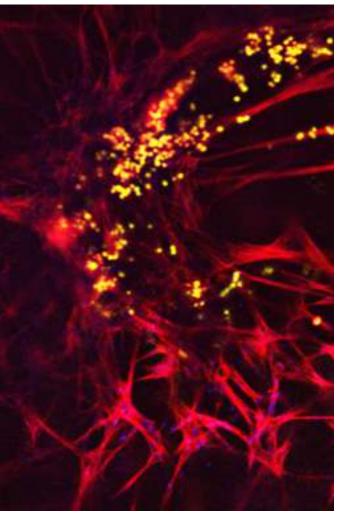
In vitro models provide a platform to study the molecular mechanisms that govern HSC fate decisions, including self-renewal, differentiation, and quiescence. This knowledge is crucial for developing targeted therapies for haematological disorders, enhancing regenerative medicine approaches, and improving stem cell transplantation outcomes.

Studying Haematological Diseases

Diseases such as leukaemia, aplastic anaemia, and myelodysplastic syndromes significantly alter the structure and function of the bone marrow niche, disrupting haematopoiesis and impairing normal stem cell behaviour. *In vitro* models provide a valuable tool for researchers to dissect the underlying disease mechanisms, including aberrant signalling pathways, genetic mutations, and microenvironmental changes.

Developing Stem Cell Therapies

Bone marrow niche models play a critical role in advancing stem cell-based therapies by providing a controlled environment to study the complex interactions between HSCs and their microenvironment. By mimicking physiological conditions, these models contribute to the development of safer and more effective treatments for haematological disorders, enhancing the success rates of stem cell therapies and bone marrow transplants.


Drug Development

By providing a physiologically relevant environment that closely mimics the bone marrow niche, these models enhance the accuracy and efficiency of drug screening processes. They allow researchers to evaluate the effects of potential therapeutics on HSCs and their supportive microenvironment under controlled conditions, enabling more precise assessments of drug efficacy, toxicity, and off-target effects.

Conclusion

The evolution of bone marrow niche *in vitro* models continues to drive advancements in drug development, providing biopharma companies with powerful tools to study stem cell dynamics, haematological disorders, and therapeutic interventions. Scaffold-based 3D cell cultures, microfluidic systems, and co-culture approaches are at the forefront of this innovation, offering more reliable and predictive platforms for testing next-generation therapies.

As the field continues to evolve, bioengineered bone marrow niche models are expected to play an increasingly pivotal role in both research and clinical applications. By bridging the gap between *in vitro* studies and *in vivo* physiology, these models hold the promise of revolutionising our understanding of the bone marrow microenvironment, ultimately leading to improved treatments for haematological disorders and enhanced regenerative medicine strategies.

3D Bone Marrow Niche, Acute Myeloid Leukemia

REFERENCES

1. https://www.crownbio.com/3d-bone-marrow-models

Talita Stessuk

Talita Stessuk, PhD, works as a scientist in the Ex Vivo Patient Tissue Platform, at Crown Bioscience. She holds a PhD in Biotechnology from the University of São Paulo (Brazil)

and served as a postdoctoral researcher at Radboud UMC and TUe (The Netherlands). She has a strong foundation in regenerative medicine and tissue regeneration. With an extensive background in pre-clinical and clinical research, Talita has experience in the application of mesenchymal stromal cells (MSCs) for the regeneration of different tissues, including bone tissue engineering. At Crown Bioscience, Talita spearheaded the development of the 3D Bone Marrow Niche (BMN) platform, advancing research in haematological malignancies. She is an expert in advanced 3D culture systems, high throughput screening, high content image analysis, 3D immunofluorescence, and multi-colour flow cytometry. Passionate about pushing the boundaries of scientific innovation, Talita is committed to reproducing the tumour microenvironment in order to optimise the pre-clinical screening of bone marrow cancers.