PCI 7 November 2023, 15:22
Thermofisher: Thu 29 February 2024, 11:15
BMG Labtech: Wed 18 September 2024, 11:55
Owen Mumford 12 January 2022, 16:46

Current Edition

Cell and Gene Therapy

Upcoming Events

NextGen BioMed – 04/02/2025
BioTrinity 2025 – January 30th 2025
Elrig R&I 2025 – 27th January 2025
Biotechnology Show 2025: 20th January 2025
Anglonordic: 16th January 2025
AI in Drug Discovery – SAE media – January 14th 2025

Advertisement

Fujifilm rectangle: Fri 22 November 2024, 14:23
Roald Dahl Charity: Fri 15 November 2024, 12:57
A&M STABTEST: Fri 21 June 2024, 11:43
CDD Vault: Wed 17 July 2024, 11:46
Aurisco – 04/02/2025

New insight into cell receptors opens the way for tailored cancer drugs

New research on how cancer mutations influence a certain type of receptor on the cell membrane opens the way for the development of tailored drugs for certain cancers, such as rectal cancer and lung cancer. This according to researchers at Sweden’s Karolinska Institutet and Uppsala University, who have been collaborating with researchers in the UK and USA. The results of their work, which concerns a group of G protein-coupled receptors called Class Frizzled (Class F), are published in the journal Nature Communications.

“Class F receptor dysfunction can be linked to different forms of cancer,” says Gunnar Schulte, study leader and professor at Karolinska Institutet’s Department of Physiology and Pharmacology. “We can now describe in molecular detail how the receptors are activated and try to find drugs that stop this activation to prevent tumour growth.”

The receptors on the cell membrane are activated by hormones or messenger molecules, which trigger a cascade of processes within. G protein-coupled receptors are one of the largest protein families in the body and are already an established drug target for a whole range of diseases. An important subgroup of G protein-coupled receptors are the so-called Class F receptors, but to date they have not constituted a therapeutic target to any great extent.

In this present study, the researchers used newly developed methods to compare the mutation frequency of Class F receptors in tumours with the normal population. In linking cancer mutations to receptor function in this way, they claim to have opened up new opportunities for mechanism-based drug discovery. The study describes for the first time how regions of the Class F receptor act as a kind of switch for receptor activation, and how mutations in the receptor molecules can drive tumour development.

According to Professor Schulte, there are indications that other diseases, such as fibrosis, can also be linked to Class F receptor dysfunction. The researchers are currently working with the Swedish national research facility SciLifeLab to develop their ideas and explore potential new drugs.

“Drugs targeting receptors in this group have been unspecific,” Professor Schulte says. “We hope that it will now be possible to develop more effective drugs that can target individual receptors, drugs for cancers such as rectal, cervical and lung cancer.”

Newcells 3 June 2024, 15:12
Novonordisk: Wed 17 July 2024, 11:22
FujiFilm 30 October 2023, 16:23
Autoscribe Mon 26 June 2023, 15:15
Aldevron: 16th January 2025
Richter: Wed 23 October 2024, 09:03
GenXPro: Mon 16 September 2024, 10:40